Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods
نویسندگان
چکیده
Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic systems. For this problem we first solve the eigenvalue problem for the undamped system using the structure preserving method and then use the quadratic Jacobi-Davidson method as correction procedure. We also illustrate the properties of the new approach for several other application problems.
منابع مشابه
Structured doubling algorithms for solving g-palindromic quadratic eigenvalue problems∗
The T-palindromic quadratic eigenvalue problem (λB + λC + A)x = 0, with A,B,C ∈ Cn×n, C = C and B = A, governs the vibration behavior of trains. One way to solve the problem is to apply a structure-preserving doubling algorithm (SDA) to the nonlinear matrix equation (NME) X + BX−1A = C and “square-root” the matrix quadratic involved. In this paper, we generalize the SDA for the solution of (odd...
متن کاملSolving Large-scale Quadratic Eigenvalue Problems with Hamiltonian Eigenstructure Using a Structure-preserving Krylov Subspace Method
We consider the numerical solution of quadratic eigenproblems with spectra that exhibit Hamiltonian symmetry. We propose to solve such problems by applying a Krylov-Schur-type method based on the symplectic Lanczos process to a structured linearization of the quadratic matrix polynomial. In order to compute interior eigenvalues, we discuss several shift-and-invert operators with Hamiltonian str...
متن کاملStructure-Preserving Algorithms for Palindromic Quadratic Eigenvalue Problems Arising from Vibration of Fast Trains
In this paper, based on Patel’s algorithm (1993), we proposed a structure-preserving algorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship between the structure-preserving algorithm and the URV-based structure-preserving algorithm by Schröder (2007). For large sparse palindromic QEPs, we develop a generalized >skew-Hamiltonian implicity-restarted ...
متن کاملA Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e...
متن کاملA structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems
We propose a structure-preserving doubling algorithm for a quadratic eigenvalue problem arising from the stability analysis of time-delay systems. We are particularly interested in the eigenvalues on the unit circle, which are difficult to compute. The convergence and backward error of the algorithm are analyzed and three numerical examples are presented. Our experience shows that the algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2003